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Basics of Radar Polarimetry  
Abstract A comprehensive overview of the basic principles of radar polarimetry is presented. The relevant 
fundamental field equations are first provided. The importance of the propagation and scattering behavior in 
various frequency bands, the electrodynamic foundations such as Maxwell’s equations, the Helmholtz vector 
wave equation and especially the fundamental laws of polarization will first be introduced: The fundamental 
terms which represent the polarization state will be introduced, defined and explained. Main points of view 
are the polarization Ellipse, the polarization ratio, the Stokes Parameter and the Stokes and Jones vector 
formalisms as well as its presentation on the Poincaré sphere and on relevant map projections. The Polarization 
Fork descriptor and the associated van Zyl polarimetric power density and Agrawal polarimetric phase 
correlation signatures will be introduced also in order to make understandable the polarization state 
formulations of electromagnetic waves in the frequency domain. The polarization state of electromagnetic 
waves under scattering conditions i.e. in the radar case will be described by matrix formalisms. Each 
scatterer is a polarization transformer; under normal conditions the transformation from the transmitted wave 
vector to the received wave vector is linear and this behavior, principally, will be described by a matrix 
called scattering matrix. This matrix contains all the information about the scattering process and the 
scatterer itself. The different relevant matrices, the respective terms like Jones Matrix, S-matrix, Müller M-
matrix, Kennaugh K-matrix, etc. and its interconnections will be defined and described  together with change 
of polarization bases transformation operators, where upon the optimal (Characteristic) polarization states are 
determined for the coherent and partially coherent cases, respectively. The lecture is concluded with a set of 
simple examples. 
 
1. Introduction: A Review of Polarimetry 
Radar Polarimetry (Polar: polarization, Metry: measure) is the science of acquiring, processing and 
analyzing the polarization state of an electromagnetic field. Radar polarimetry is concerned with the 
utilization of polarimetry in radar applications as reviewed most recently in Boerner [1] where a host of 
pertinent references are provided. Although polarimetry has a long history which reaches back to the 18th 
century, the earliest work that is related to radar dates back to the 1940s. In 1945 G.W. Sinclair introduced 
the concept of the scattering matrix as a descriptor of the radar cross section of a coherent scatterer [2], [3]. 
In the late 1940s and the early 1950s major pioneering work was carried out by E.M. Kennaugh [4, 5].  He 
formulated a backscatter theory based on the eigenpolarizations of the scattering matrix introducing the 
concept of optimal polarizations by implementing the concurrent work of G.A. Deschamps, H. Mueller, and 
C. Jones. Work continued after Kennaugh, but only a few notable contributions, as those of G.A. Deschamps 
1951 [6], C.D. Graves 1956 [7], and J.R. Copeland 1960 [8], were made until Huynen’s studies in 1970s. 
The beginning of a new age was the treatment presented by J.R. Huynen in his doctoral thesis of 1970 [9], 
where he exploited Kennaugh’s optimal polarization concept [5] and formulated his approach to target radar 
phenomenology. With this thesis, a renewed interest for radar polarimetry was raised. However, the full 
potential of radar polarimetry was never fully realized until the early 1980s, due in no small parts to the 
advanced radar device technology [10, 11]. Technological problems led to a series of negative conclusions 
in the 1960s and 1970s about the practical use of radar systems with polarimetric capability [12]. Among the 
major contributions of the 1970s and 1980s are those of W-M Boerner [13, 14, 15] who pointed out the 
importance of polarization first in addressing vector electromagnetic inverse scattering [13]. He initiated a 
critical analysis of Kennaugh’s and Huynen’s work and extended Kennaugh’s optimal polarization theory 
[16]. He has been influential in causing the radar community to recognize the need of polarimetry in remote 
sensing applications. A detailed overview on the history of polarimetry can be found in [13, 14, 15], while a 
historical review of polarimetric radar technology is also given in [13, 17, 18]. 
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Polarimetry deals with the full vector nature of polarized (vector) electromagnetic waves throughout the 
frequency spectrum from Ultra-Low-Frequencies (ULF) to above the Far-Ultra-Violet (FUV) [19, 20].  
Whenever there are abrupt or gradual changes in the index of refraction (or permittivity, magnetic 
permeability, and conductivity), the polarization state of a narrow band (single-frequency) wave is 
transformed, and the electromagnetic “vector wave” is re-polarized.  When the wave passes through a 
medium of changing index of refraction, or when it strikes an object such as a radar target and/or a scattering 
surface and it is reflected; then, characteristic information about the reflectivity, shape and orientation of the 
reflecting body can be obtained by implementing ‘polarization control’ [10, 11].  The complex direction of 
the electric field vector, in general describing an ellipse, in a plane transverse to propagation, plays an 
essential role in the interaction of electromagnetic ‘vector waves’ with material bodies, and the propagation 
medium [21, 22, 13, 14, 16].  Whereas, this polarization transformation behavior, expressed in terms of the 
“polarization ellipse” is named “Ellipsometry” in Optical Sensing and Imaging [21, 23], it is denoted as 
“Polarimetry” in Radar, Lidar/Ladar and SAR Sensing and Imaging [12, 14, 15, 19] - using the ancient 
Greek meaning of  “measuring orientation and object shape”.  Thus, ellipsometry and polarimetry are 
concerned with the control of the coherent polarization properties of the optical and radio waves, 
respectively [21, 19].  With the advent of optical and radar polarization phase control devices, ellipsometry 
advanced rapidly during the Forties  (Mueller and Land [24, 21]) with the associated development of 
mathematical ellipsometry, i.e., the introduction of ‘the 2 x 2 coherent Jones forward scattering 
(propagation) and the associated 4 x 4 average power density Mueller (Stokes) propagation matrices’ [21]; 
and polarimetry developed independently in the late Forties with the introduction of dual polarized antenna 
technology (Sinclair, Kennaugh, et al. [2, 3, 4, 5]), and the subsequent formulation of ‘the  2 x 2 coherent 
Sinclair radar back-scattering matrix and the associated 4 x 4 Kennaugh radar back-scattering power 
density matrix’, as summarized in detail in Boerner et al. [19, 25].  Since then, ellipsometry and polarimetry 
have enjoyed steep advances; and, a mathematically coherent polarization matrix formalism is in the process 
of being introduced for which the lexicographic covariance matrix presentations [26, 27] of signal estimation 
theory play an equally important role in ellipsometry as well as polarimetry [19].  Based on Kennaugh’s 
original pioneering work on discovering the properties of the “Spinorial Polarization Fork” concept [4, 5], 
Huynen [9] developed a “Phenomenological Approach to Radar Polarimetry”, which had a subtle impact 
on the steady advancement of polarimetry [13, 14, 15] as well as ellipsometry by developing the “orthogonal 
(group theoretic) target scattering matrix decomposition” [28, 29, 30] and by extending the characteristic 
optimal polarization state concept of Kennaugh [31, 4, 5], which lead to the renaming of the spinorial 
polarization fork concept to the so called ‘Huynen Polarization Fork’ in ‘Radar Polarimetry’ [31].  Here, we 
emphasize that for treating the general bistatic (asymmetric) scattering matrix case, a more general 
formulation of fundamental Ellipsometry and Polarimetry in terms of a spinorial group-theoretic approach is 
strictly required, which was first explored by Kennaugh but not further pursued by him due to the lack of 
pertinent mathematical formulations [32, 33]. 
 
In ellipsometry, the Jones and Mueller matrix decompositions rely on a product decomposition of relevant 
optical measurement/transformation quantities such as diattenuation, retardence, depolarization, 
birefringence, etc., [34, 35, 23, 28, 29] measured in a ‘chain matrix arrangement, i.e., multiplicatively 
placing one optical decomposition device after the other’. In polarimetry, the Sinclair, the Kennaugh, as 
well as the covariance matrix decompositions [29] are based on a group-theoretic series expansion in terms 
of the principal orthogonal radar calibration targets such as the sphere or flat plate, the linear dipole and/or 
circular helical scatterers, the dihedral and trihedral corner reflectors, and so on - - observed in a linearly 
superimposed aggregate measurement arrangement [36, 37]; leading to various canonical target feature 
mappings [38] and sorting as well as scatter-characteristic decomposition theories [39, 27, 40].   In addition, 
polarization-dependent speckle and noise reduction play an important role in both ellipsometry and 
polarimetry, which in radar polarimetry were first pursued with rigor by J-S. Lee [41, 42, 43, 44].  The 
implementation of all of these novel methods will fail unless one is given fully calibrated scattering matrix 
information, which applies to each element of the Jones and Sinclair matrices.  
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It is here noted that it has become common usage to replace “ellipsometry” by “optical polarimetry” and 
expand “polarimetry” to “radar polarimetry” in order to avoid confusion [45, 18], a nomenclature adopted in 
the remainder of this paper. 
Very remarkable improvements beyond classical “non-polarimetric” radar target detection, recognition and 
discrimination, and identification were made especially with the introduction of the covariance matrix 
optimization procedures of Tragl [46], Novak et al. [47 - 51], Lüneburg [52 - 55], Cloude [56], and of Cloude 
and Pottier [27].  Special attention must be placed on the ‘Cloude-Pottier Polarimetric Entropy , 
Anisotropy

H
A , Feature-Angle (α ) parametric decomposition’ [57] because it allows for unsupervised target 

feature interpretation [57, 58].  Using the various fully polarimetric (scattering matrix) target feature 
syntheses [59], polarization contrast optimization, [60, 61] and polarimetric entropy/anisotropy classifiers, 
very considerable progress was made in interpreting and analyzing POL-SAR image features [62, 57, 63, 64, 
65, 66]. This includes the reconstruction of ‘Digital Elevation Maps (DEMs)’ directly from ‘POL-SAR 
Covariance-Matrix Image Data Takes’ [67 - 69] next to the familiar method of DEM reconstruction from 
IN-SAR Image data takes [70, 71, 72].  In all of these techniques well calibrated scattering matrix data takes 
are becoming an essential pre-requisite without which little can be achieved [18, 19, 45, 73]. In most cases 
the ‘multi-look-compressed SAR Image data take MLC- formatting’ suffices also for completely polarized 
SAR image algorithm implementation [74]. However, in the sub-aperture polarimetric studies, in 
‘Polarimetric SAR Image Data Take Calibration’, and in ‘POL-IN-SAR Imaging’, the ‘SLC (Single Look 
Complex) SAR Image Data Take Formatting’ becomes an absolute must [19, 1]. Of course, for SLC-
formatted Image data, in particular, various speckle-filtering methods must be applied always.  
Implementation of the ‘Lee Filter’ – explored first by Jong-Sen Lee - for speckle reduction in polarimetric 
SAR image reconstruction, and of the ‘ Polarimetric Lee-Wishart distribution’ for improving image feature 
characterization have further contributed toward enhancing the interpretation and display of high quality 
SAR Imagery [41 – 44, 75].   

 
2. The Electromagnetic Vector Wave and Polarization Descriptors 
The fundamental relations of radar polarimetry are obtained directly from Maxwell’s equations [86, 34], 
where for the source-free isotropic, homogeneous, free space propagation space, and assuming IEEE 
standard [102] time-dependence exp( )j tω+ , the electric  and magnetic  fields satisfy with E H µ  being the 
free space permeability  and ε  the free space permittivity 
 
                      x ( ) ( ),              x ( )  ( )j jωµ− ∇ =E r H r H r E rωε∇ =  (2.1) 
 
which for the time-invariant case, result in  
 

2
0

exp( ) exp( )( ) 0,      ( ) ,      ( )jkr jkrk E H
r r
− −

∇ + = = =E E r H r 0  (2.2) 

 
 for an outgoing spherical wave with propagation constant ( )1/ 2 k ω ε µ=   and  being the free 
space velocity of electromagnetic waves 

( ) 1/ 2c ε µ −=  

 
No further details are presented here, and we refer to Stratton [86], Born and Wolf [34] and Mott [76] for full 
presentations. 

 
2.1 Polarization Vector and Complex Polarization Ratio 
With the use of the standard spherical coordinate system ( )ˆ ˆ ˆ, ,  ; u , u , urr θ φθ φ  with φθ ,,r   denoting the 

radial, polar, azimuthal coordinates, and u ,ˆ ˆ ˆu , ur θ φ  the corresponding unit vectors, respectively; the outward 
travelling wave is expressed as  
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 ∗= + = + = × = = = 
 

E H P E H Ω     (2.3)  

                                
with  denoting the Poynting power density vector, and  being the intrinsic impedance of the medium 
(here vacuum).  Far from the antenna in the far field region [86, 76], the radial waves of (2.2) take on plane 
wave characteristics, and assuming the wave to travel in positive z-direction of a right-handed Cartesian 
coordinate system ( ,

P 0Z

, )x y z , the electric field E , denoting the polarization vector, may be rewritten as  
 

   ˆ ˆ ˆ ˆu u | | exp( ){u u exp( )}y
x x y y x x x y

x

E
E E E j j

E
φ φ= + = +E  (2.4) 

 
with |  being the amplitudes, |||, yx EE  yx φφ  ,  the phases,  xy φφφ −=  the relative phase; αtan|/| =yx EE  

with αφφ   , , yx   and φ  defining the Deschamps parameters [6, 103].  Using these definitions, the 
‘normalized complex polarization vector p ’ and the ‘complex polarization ratio  ρ ’ can be defined as  
 

(xˆ ˆu  u  
ˆ ˆu  u

| | | | | |
x y y x

x

E E E ρ
+

= = = +
Ep
E E E )y

y

 (2.5) 

 
with | |  and | |2 2

xE E∗= ⋅ = +E E E 2 E=E  defines the wave amplitude, and ρ  is given by 
 

( ) xy
x

y

x

y j
E
E

E
E

φφφφρ −===         ,exp  (2.6) 

 
2.2 The Polarization Ellipse and its Parameters 
The tip of the real time-varying vector E , or , traces an ellipse for general phase differencep φ , where we 
distinguish between right-handed (clockwise) and left-handed (counter-clockwise) when viewed by the 
observer in direction of the travelling wave [76, 19], as shown in Fig. 2.1 for the commonly used horizontal 
H (by replacing x) and vertical V (by replacing y) polarization states. 

There exist unique relations between the alternate representations, as defined in Fig. 2.1 and Fig. 2.2 
with the definition of the orientation ψ  and ellipticity χ  angles expressed, respectively, as  
 

, 0 / 2   and   tan 2 tan(2 )cos      / 2 / 2y

x

E
E

α ρ α π ψ α φ π ψ= = ≤ ≤ = − ≤ ≤ +π      (2.7) 

tan ,      sin 2 sin 2 sin  ,     / 4 / 4minor axis/major axisχ χ α φ π χ π= ± = − ≤ ≤       (2.8) 
 
where the  and signs are for left- and right-handed polarizations respectively. + −
For a pair of orthogonal polarizations p and  1 ⊥

= 12 pp   
 

2121112 2
10 χχπψψρρρ −=+=−===⋅ ⊥

∗           ,              pp *
21  (2.9)               

 
In addition, the following useful transformation relations exist: 
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)exp( tan
2cos2cos1

2sin2sin2cos φα
ψχ

χψχρ jj
=

+
+

=  (2.10) 

 
where ),( φα and ( ), χψ  are related by the following equations: 
 

ψχφχψα 2sin/2tantan   ,2cos2cos2cos ==   (2.11) 
 
and inversely 
 









−

=+







−

= ∗∗ ρρ
ρχππ

ρρ
ρψ

1
}Im{2arcsin

2
1

1
}Re{2arctan

2
1       )mod( ...      (2.12) 

 

 
(a) Rotation Sense (Courtesy of Prof. E. Pottier) 
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(b) Orientation ψ  and Ellipticity χ Angles.  (c) Electric Field Vector. 
 
 

Fig. 2.1 Polarization Ellipse.  
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Fig. 2.2 Polarization Ellipse Relations (Courtesy of Prof. E. Pottier) 

 
Another useful formulation of the polarization vector  was introduced by Huynen in terms of the 
parametric formulation [9, 104], derived from group-theoretic considerations based on the Pauli SU(2) 
matrix set   

p

[ ]{ } ,   0,1, 2,3P i iψ σ =

0
as further pursued by Pottier [105], where according to (2.10) and 

(2.11), for ψ = , and then rotating this ellipse by ψ . 
 

cos sin cos
(| |, , , ) | | exp( )

sin cos sin
j

j
ψ ψ χ

φ ψ χ φ
ψ ψ χ

−  
=   −  

p E E




 (2.13) 

 
which will be utilized later on; and [ ]{ },   0,1, 2,3P i iψ σ =  is defined in terms of the 

classical unitary Pauli matrices [ ]iσ  as  
 

[ ] [ ] [ ] [ ]0 1 3

1 0 1 0 0 1 0
 ,      ,       ,     

0 1 0 1 1 0 0
j

j
σ σ σ σ2

−      
= = = =      −      





]

 (2.14) 

 
where the [ iσ  matrices satisfy the unitarity condition as well as commutation properties given by   
 

[ ] [ ] [ ]{ } [ ] [ ] [ ][ ] [ ]1
0,      1 ,       ,    T

i i i i j j i i iDetσ σ σ σ σ σ σ σ σ− ∗    = = = −    σ=  (2.15) 

 
satisfying the  ordinary matrix product relations. 
 
2.3 The Jones Vector and Changes of Polarization Bases 
If instead of the basis {x y} or {H V}, we introduce an alternative presentation {m n} as a linear combination 
of two arbitrary orthonormal polarization states E and   for which                  m nE

ˆ ˆ m m n nE E= +E u u  (2.16) 
 
and the standard basis vectors are in general, orthonormal, i.e.  

Basics of SAR Polarimetry I  

1 - 6 RTO-EN-SET-081 



 

 

   
† †

nˆ ˆ ˆ ˆ ˆ ˆu u 0,   u u u um n m m n⋅ = ⋅ = ⋅ =† 1 (2.17) 
 
with †  denoting the hermitian adjoint operator [21, 52, 53]; and the Jones vector E  may be defined as  mn

 

*

| |exp 1 1 co| |exp( ) | |exp( )
| |exp sin exp( )1

m m m m
mn m m

n n n

E E j jE j
E E j

s
j

φ αφ φ
φ ρ ρ αρρ

         
= = = = =         

+        

EE E
φ

 (2.18) 

 
with tan | / |n mE Eα = and mn φφφ −= .  This states that the Jones vector possesses, in general, four degrees 
of freedom.  The Jones vector descriptions for characteristic polarization states are provided in Fig. 2.3.  

( , ) m
mn

n

E
m n

E
 

= = 
 

E E        ( , ) i
ij

j

E
i j

E
 

= =  
 

E E     and   ( , ) A
AB

B

E
A B

E
 

= =  
 

E E  (2.20) 

                           
The unique transformation from the {  to the arbitrary{ or {ˆ ˆ m nu u } ˆ ˆ }i ju u ˆ ˆ }A Bu u  bases is sought which is a 
linear transformation in the two-dimensional complex space so that 
 

2 2[ ] ( , ) [ ] ( ,ij mnU or i j U m= =E E E E )n 2 ]    with   [ ]  (2.21) †
2 2 [ ] [U U I=

 
satisfying wave energy conservation with  [ 2 ]I  being the  2x2  identity matrix, and we may choose, as 
shown in [81],  
 

1exp( )ˆ
1

i
i

jφ
ρρρ∗

 
=  

+  
u   and   1

1exp( ) exp( )ˆ ˆ
11 1

i
j i

j j i ρφ φ
ρρρ ρρ

−⊥

∗

∗∗ ∗

   −
= = =   

− + +   
u u  (2.22) 

 
with  j jφ φ φ′ = + +π  so that 
 

2

exp( ) exp( )1[ ]
exp( ) exp( )1

i

i j

j j
U

j j
jφ ρ φ

ρ φ φρρ

∗

∗

 −
= 

 +  
  (2.23) 

 

yielding  2[ ] exp{ ( )}i jDet{ U } j φ φ′= +  with 0=′+ ji φφ  
 
Since any monochromatic plane wave can be expressed as a linear combination of two orthonormal linear 
polarization states, defining the reference polarization basis, there exist an infinite number of such bases {i j} 
or {A B} for which 
 

nˆ ˆ ˆ ˆ ˆ ˆ u u u u u um m n i i j j A A B BE E E E E= + = + = +E E  (2.19)  
 
with corresponding Jones vectors presented in two alternate, most commonly used notations 
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Fig. 2.3 Jones Vector Descriptions for Characteristic Polarization States with direction of  

                          propagation out of the page (Courtesy of Prof. E. Pottier) 
 

Since  [   is a special unitary 2x2 complex matrix with unit determinant, implying that (i) the amplitude 
of the wave remains independent of the change of the polarization basis, and that (ii) the phase of the 
(absolute) wave  may be consistently defined as the polarization basis is changed, we finally obtain, 

2U ]

2

exp( ) 011[ ]
0 exp( )11

i

i

j
U

j
φρ

φρρρ

∗

∗

   −
=   

+   
  (2.24) 

possessing three degrees of freedom similar to the normalized Jones vector formulation, but in most cases the 
phase reference is taken as 0=iφ  which may not be so in polarimetric interferometry [96]. For further 
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details on the group-theoretic representations of the proper transformation relations see the formulations 
derived by Pottier in [106]. 
 
2.4 Complex Polarization Ratio in Different Polarization Bases 
Any wave can be resolved into two orthogonal components (linearly, circularly, or elliptically polarized) in 
the plane transverse to the direction of propagation. For an arbitrary polarization basis {A B} with unit 
vectors a andˆ b̂ , one may define the polarization state 

 
ˆˆ( ) aA B bAB E E= +E  (2.25) 

 
where the two components  and  are complex numbers. The polarization ratio AE BE ABρ  in an arbitrary 
basis {A B} is also a complex number, and it may be defined as 
 

exp{ ( )} exp{ }BB
AB B A AB AB

A A

EE j
E E

jρ φ φ ρ φ= = − =  (2.26) 

 
where ABρ  is the ratio of magnitude of two orthogonal components of the field AE  and BE  and ABφ is 

the phase difference between  and . The complex polarization ratio AE BE ABρ  depends on the polarization 
basis {A B} and can be used to specify the polarization of an electromagnetic wave 

1
1 1

( ) exp{ } exp{ }
1

11exp{ }
1

B B

A A A
A A A A

A AB B B

A A

A
ABAB AB

E E
E E E

AB E j E j
E E E

E E

j

φ φ
ρ ρ

φ
ρρ ρ

∗

∗

∗

∗

∗

+
    

= = =    
    +

 
=  

+  

E

E

AB





  (2.27) 

 

where A A B BE E E E∗= +E ∗ ) is the amplitude of the wave E . If we choose (AB 1=E  and disregard the 

absolute phase Aφ , the above representation becomes 

11( )
1 ABAB AB

AB
ρρ ρ∗

 
=  

+  
E   (2.28) 

 
This representation of the polarization state using the polarization ratio ABρ  is very useful. For example, if 
we want to represent a left-handed circular (LHC) polarization state and a right-handed circular (RHC) 
polarization state in a linear basis {H V} using the polarization ratio. For a left-handed circular (LHC) 
polarization, H VE E= , 2HV V H

πφ φ φ= − = , and according to (2.26), the polarization ratio HVρ  is j . 

Using (2.28) with HV jρ = , we obtain for the left-handed circular (LHC) polarization 

11( )
2

HV
j

 
=  

 
E  (2.29) 

 
Similarly, the polarization ratio HVρ  of a right-handed circular (RHC) polarization state in a linear basis {H 
V} is j−  because the relative phase 2HVφ π= − , and its representation is 
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11( )
2

HV
j

 
= − 

E   (2.30) 

 
The complex polarization ratio ρ  is important in radar polarimetry. However, the value of the polarization 
ratio ρ defined in a certain polarization basis is different from that defined in the other polarization basis 
even if the physical polarization state is the same. 

 
2.4.1 Complex Polarization Ratio in the Linear Basis {H V} 
In the linear {H V} basis with unit vectors  and , a polarization state may be expressed as: ĥ v̂

 
                           (2.31) ˆ ˆ( ) hH VHV E E= +E v
 
The polarization ratio HVρ , according to (2.6), can be described as: 

( ) ( ) exp tan exp ,        V V
HV HV HV HV HV

H H

E E j j
E E V Hρ φ α φ φ φ= = = = −φ   (2.32) 

 
where the angle HVα  is defined in Fig. 2.1c, only in the {H V} basis and 

                                                  
2 2

2 2

cos

sin

H H V H

V H V

E E E

E E E

V

HV

α

α

= +

= +
  (2.33) 

 
Also, for a single monochromatic, uniform TEM (transverse electromagnetic) traveling plane wave in the 
positive z direction, the real instantaneous electric field is written as 

cos( )( , )
( , ) ( , ) cos( )

( , ) 0

x xx

y y

z

E t kzz t
z t z t E t kz

z t
y

ω φε
ε ω φ
ε

 − + 
  = = − + 
     

ε   (2.34) 

 
In a cartesian coordinate system, the x+ -axis is commonly chosen as the horizontal basis (H) and the y+ -
axis as the vertical basis (V) Substituting (2.33) into (2.34), we find 
 

2 2

2 2

2 2

cos cos( )
( , )

sin cos( )

cos
exp exp{ ( )}

sin exp( )

H V HV H

H V HV V

HV
H V H

HV

E E t kz
z t

E E t kz

E E j t kz
j

α ω φ

α ω φ

α
ω φ

α φ

 + − +
 = =
 + − +

   = + − +  
   

ε


H

 (2.35) 

 
where Vφ φ φ= −  is the relative phase. The expression in the square bracket is a spinor [32] which is 
independent of the time-space dependence of the traveling wave. The spinor parameters ( , )α φ  are easy to 
be located on the Poincaré sphere and can be used to represent the polarization state of a plane wave. In Fig. 
2.4c, the polarization state, described by the point  on the Poincaré sphere, can be expressed in terms of 
these two angles, where 

EP
2 HVα  is the angle subtended by the great circle drawn from the point  on the 

equator measured from H toward V; and 
EP

HVφ  is the angle between the great circle and the equator.  
From equations, (2.7) and (2.8) for the {H V} basis we have 
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sin 2 sin 2 sin
tan 2 tan(2 )cos

HV HV

HV HV

χ α φ
ψ α φ

=
=

 (2.36) 

 
which describes the ellipticity angle χ  and the tilt or orientation angle ψ  in terms of the variables HVα  and 

HVφ . Also, from (2.11) for the {H V} basis an inverse pair that describes the HVα  and HVφ  in terms of χ  
and ψ  is given in (2.37) 
cos 2 cos 2 cos 2

tan 2tan
sin 2

HV

HV

α ψ χ
χφ
ψ

=

=
 (2.37) 

 
It is convenient to describe the polarization state by either of the two set of angles ( , )HV HVα φ or ( , )χ ψ  
which describe a point on the Poincaré sphere. The complex polarization ratio HVρ  can be used to specify 
the polarization of an electromagnetic wave expressed in the {H V} basis. Some common polarization states 
expressed in terms of  ( , )χ ψ , ρ , and the normalized Jones vector  are listed in Table 2.1 at the end of 
this section. 

E

 
2.4.2 Complex Polarization Ratio in the Circular Basis {L R} 
In the circular basis {L R}, we have two unit vectors (left-handed circular) and  (right- handed 
circular). Any polarization of a plane wave can be expressed by 

L̂ R̂

 
                      E  (2.38) ˆ( ) L RL RLR E E= + ˆ
 
A unit amplitude left-handed circular polarization has only the L component in the circular basis {L R}. It 
can be expressed by 

1ˆ ˆ( ) 1 L 0 R
0

LR  
= ∗ + ∗ =  

 
E  (2.39) 

 

The above representation of a unit (LHC) polarization in the circular basis {L R} is different from that in the 
linear basis {H V} of (2.29). Similarly, a unit amplitude right-handed circular polarization has only the R 
component in the circular basis {L R} 

0ˆ ˆ( ) 0 L 1 R
1

LR  
= ∗ + ∗ =  

 
E  (2.40) 

which is different from that in the linear {H V} basis. 
 
The polarization ratio LRρ , according to (2.26) is 

exp{ ( )} exp{ } tan exp{ }RR
LR R L LR LR LR LR

L L

EE j j
E E

jρ φ φ ρ φ α φ= = − = =  (2.41) 

 
where LRρ  is the ratio of magnitudes of the two orthogonal components LE  and RE , and LRφ  the phase 

difference. The angles LRα  and LRφ  are also easy to be found on the Poincaré sphere (see Fig. 2.6) like the 
angles HVα  and HVφ . Some common polarization states in terms of LRρ , are listed in Table 2.1. 
 
2.4.3 Complex Polarization Ratio in the Linear Basis {45° 135°} 
In the linear {45° 135°} basis with unit vectors  and 135 , a polarization state may be expressed as ˆ45o ˆ o
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45 135
ˆ ˆ(45 135 ) 45 135E E= +E o o

o o o o   (2.42) 

where  and are the 45° component and the 135° component, respectively. The polarization ratio 
according to (2.26) is 

45
E o 135

E o

 

135135
45 135 135 45 45 135 45 135 45 135 45 135

45 45

exp{ ( )} exp{ } tan exp{ }
EE

j j
E E

ρ φ φ ρ φ α= = − = =
oo

o o o o o o o o o o o o

o o

jφ  (2.43) 

 
where 

45 135
ρ o o  is the ratio of magnitudes of the two orthogonal components 

135
E o  and 

45
E o , and 

45 135
φ o o  

the phase difference. The angles 
45 135

α o o  and 
45 135

φ o o  are also easy to be found on the Poincaré sphere (see 
Fig. 2.6) 

TABLE 2.1 
POLARIZATION STATES IN TERMS OF ( , )χ ψ , POLARIZATION RATIO ρ  AND NORMALIZED 

JONES VECTOR E  
 

{H V} basis {45° 135°} basis {L R} basis POLARIZATION χ  ψ  

HVρ            E  
45 135

ρ o o              E LRρ           E  
Linear 
Horizontal 

0 0 
0                 

1
0

 
 
 

 1−           
11
12

 
 − 

 1              
11
12

 
 
 

 

Linear 
Vertical 

0 

2
π

 ∞                
0
1

 
 
 

 1               
11
12

 
 
 

 1−         
1
2

j
j

− 
 
 

 

45° Linear 0 

4
π

 1           
11
12

 
 
 

 0                     
1
0

 
 
 

 j         
11
12

j
j

− 
 
 

 

135° Linear 0 

4
π

−  1−       
11

12
− 

 
 

 ∞                    
0
1

 
 
 

 j−    
11
12

j
j

− − 
 − 

 

Left-handed 
Circular 4

π
 

 
j          

11
2 j

 
 
 

 j          
11
12

j
j

 
 − 

 0                    
1
0

 
 
 

 

Right-handed 
Circular 4

π
−  

 
j−      

11
2 j

 
 − 

 j−     
11
12

j
j

− 
 − − 

 ∞                   
0
1

 
 
 

 

 

2.5 The Stokes Parameters 
So far, we have seen completely polarized waves for which AE , BE , and ABφ  are constants or at least 
slowly varying functions of time. If we need to deal with partial polarization, it is convenient to use the 
Stokes parameters  introduced by Stokes in 1852 [107] for describing partially polarized 
waves by observable power terms and not by amplitudes (and phases). 

3210 ,, qandqqq     

 
2.5.1 The Stokes vector  for the completely polarized wave  
For a monochromatic wave, in the linear {H V} basis, the four Stokes parameters are 
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2 2
0

2 2
1

2

3

2 cos

2 sin

H V

H V

H V HV

H V H

q E E

q E E

q E E

q E E V

φ

φ

= +

= −

=

=

  (2.44) 

 
For a completely polarized wave, there are only three independent parameters, which are related as follows 
 

2
3

2
2

2
1

2
0 qqqq ++=   (2.45) 

 
The Stokes parameters are sufficient to characterize the magnitude and the relative phase, and hence the 
polarization of a wave. The Stokes parameter  is always equal to the total power (density) of the wave;  
is equal to the power in the linear horizontal or vertical polarized components; q  is equal to the power in 

the linearly polarized components at tilt angles 

0q 1q

2

45ψ = o  or 135 ; and  is equal to the power in the left-

handed and right-handed circular polarized components. If any of the parameters  has a 
non-zero value, it indicates the presence of a polarized component in the plane wave. The Stokes parameters 
are also related to the geometric parameters , 

o
3q

0 1 2,  ,   or q q q q3

A χ , and ψ  of the polarization ellipse 
 

2 2 2
0

2 2 2
1

2
2

2
3

| | | |
| | | cos 2 cos 2

2 cos cos 2 sin 2
2 sin sin 2

H V

H V

H V HV

H V HV

q E E A
q E E A
q E E A
q E E A

ψ χ
φ ψ χ
φ χ

 +  
     −    = = =    
    

      

q



  (2.46) 

 
which for the normalized case q e  and 2 2 2 2

0 1H Ve e= = + =
 

2 2 2 2 2
0

2 2 2 2 2
1

22 2
2

2
3

| | | |
| | | cos 2 cos 21

2 Re{ } 2 cos cos 2 sin 2| | | |
2 Im{ } 2 sin sin 2

H V H V

H V H V

H V H VH V

H V H V

q E E e e e
q E E e e e
q E E e e eE E
q E E e e e

ψ χ
φ ψ χ
φ χ

∗

∗

     + + 
       − −      = = = =
       +       

          

q   (2.47) 

 
2.5.2 The Stokes vector  for the partially polarized wave  
The Stokes parameter presentation [34] possesses two main advantages in that all of the four parameters are 
measured as intensities, a crucial fact in optical polarimetry, and the ability to present partially polarized 
waves in terms of the 2x2 complex hermitian positive semi-definite wave coherency matrix [  also called 
the Wolf’s coherence matrix [34], defined as: 

]J

 

0 1 2 3†

2 3 0 1

[ ]
H H H V HH HV

VH VVV H V V

E E E E J J q q q jq
J

J J q jq q qE E E E

∗ ∗

∗ ∗

  + +    = = = =   − −      
EE   (2.48) 

 

where 
1... ...lim 2

T

T T

dt
T→∞

−

 
= 

 
∫   indicating temporal or ensemble averaging assuming stationarity of the 

wave. We can associate the Stokes vector q  with the coherency matrix [ ]  J
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2 2

0

2 2
1

2

3

2 cos

2 sin

H V H H V V HH VV

H V H H V V HH VV

H V HV H V V H HV VH

H V HV H V V H HV

q E E E E E E J J

q E E E E E E J J

q E E E E E E J J

q E E j E E j E E jJ jJ

φ

φ

∗ ∗

∗ ∗

∗ ∗

∗ ∗

= + = + = +

= − = − = −

= = + = +

= = − = VH−

  (2.49) 

 
and since [  is positive semidefinite matrix ]J
 

2
3

2
2

2
1

2
00]}{[ qqqqorJDet ++≥≥       (2.50) 

 
the diagonal elements presenting the intensities, the off-diagonal elements the complex cross-correlation 
between HE  and , and the Trac , representing the total energy of the wave.  For VE {[ ]}e J 0HVJ =  no 
correlation between HE  and   exists, [  is diagonal with V JE ] HH VJ J V=  , (i.e. the wave is unpolarized or 
completely depolarized, and possesses one degree of freedom only : amplitude).  Whereas, for 

 we find that  , and the correlation between {[ ]Det J } 0= VH HV HHJ J J= VVJ HE  and  is maximum, and 
the wave is completely polarized in which case the wave possesses three degrees of freedom: amplitude, 
orientation, and ellipticity of the polarization ellipse.  Between these two extreme cases lies the general case 
of partial polarization, where   is indicating a certain degree of statistical dependence between 

VE

{[ ]} 0Det J >

HE  and  which can be expressed in terms of the ‘degree of coherency’ VE µ  and the ‘degree of 
polarization’  as pD
 

exp( ) HV
HV HV HV

HH VV

Jj
J J

µ µ β= =  (2.51) 

 

( )
( )1/ 2 1/ 22 2 2

1 2 3
2

0

4 {[ ]}1
{[ ]}

p

q q qDet JD
qTrace J

  + +
 = − =
 
 

 (2.52) 

 
where 0pDµ = =   for totally depolarized and 1pDµ = =  for fully polarized waves, respectively.  
However, under a change of polarization basis the elements of the wave coherency matrix [  depend on the 
choice of the polarization basis, where according to [52, 53], [  transforms through a unitary similarity 
transformation as 

]J
]J

 
[ ] [ ] [ ] [ ] †   22 UJUJ mnij =  (2.53) 

 
The fact that the trace and the determinant of a hermitian matrix are invariant under unitary similarity 
transformations means that both, the degree of polarization as well as the total wave intensity are not 
affected by polarimetric basis transformations. Also, note that the degree of coherence mnµ  does depend on 
the polarization basis.  Table 2.2 gives the Jones vector , Coherency Matrix [ , and Stokes Vector q  for 
special cases of purely monochromatic wave fields in specific states of polarization. 

E ]J
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TABLE 2.2 
JONES VECTOR , COHERENCY MATRIX [ , AND STOKES VECTOR q  FOR SOME STATES 

OF POLARIZATION 
E ]J

 
{H V} BASIS POLARIZATION 

E  [ ]J  q  

Linear 
Horizontal 

1
0

 
 
 

 
1 0
0 0

 
 
 

 
1
1
0
0

 
 
 
 
 
 

 

Linear 
Vertical 

0
1

 
 
 

 

 

0 0
0 1

 
 
 

 
1
1

0
0

 
 − 
 
 
 

 

45° Linear 11
12

 
 
 

 

 

1 11
1 12

 
 
 

 
1
0
1
0

 
 
 
 
 
 

 

135° Linear 11
12
− 

 
 

 
1 11
1 12

− 
 − 

 

 

1
0
1

0

 
 
 
 −
 
 

 

Left-handed 
Circular 

11
2 j

 
 
 

 

 

11
12
j

j
− 

 
 

 
1
0
0
1

 
 
 
 
 
 

 

Right-handed 
Circular 

11
2 j

 
 − 

 
11

12
j

j
 
 − 

 

 

1
0
0
1

 
 
 
 
 − 

 

 
2.6 The Poincaré Polarization Sphere 
The Poincaré sphere, shown in Fig. 2.4 for the representation of wave polarization using the Stokes vector 
and the Deschamps parameters ( , )α φ  is a useful graphical aid for the visualization of polarization effects. 
There is one-to-one correspondence between all possible polarization states and points on the Poincaré 
sphere, with the linear polarizations mapped onto the equatorial plane (x = 0) with the ‘zenith’ presenting 
left-handed circular and the ‘nadir’ right-handed circular polarization states according to the IEEE standard 
notation exp( )j tω+  [102], and any set of orthogonally fully polarized polarization states being mapped into 
antipodal points on the Poincaré sphere [108].  
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(a) 

 
(b)        (c) 

Fig. 2.4 Poincaré Sphere Representations (Courtesy of Prof. E. Pottier) 
 

2.6.1 The polarization state on the Poincaré sphere for the {H V} basis 
In the Poincaré sphere representation, the polarization state is described by a point P on the sphere, where the 
three Cartesian coordinate components are , , and q  according to (2.46). So, for any state of a 
completely polarized wave, there corresponds one point  on the sphere of radius q , and vice 
versa. In Fig. 2.5, we can see that the longitude and latitude of the point P are related to the geometric 
parameter of the polarization ellipse and they are 

1q 2q 3

P 1 2 3( , ,  )q q q 0

2ψ  and 2χ  respectively. 
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Fig. 2.5 The Poincaré sphere and the parameters HVα  and HVφ  

 
In addition, the point P on the Poincaré sphere can also be represented by the angles HVα  and HVφ . From 
(2.37) and (2.46) we find that 

 
1

0

cos 2 cos 2 cos 2 HV
q
q

ψ χ α= =   (2.54) 

where cos 2 HVα  is the direction cosine of the Stokes vector q  with respect to the X-axis, i.e., the angle 
2 HVα  is the angle between  and the X-axis. The angle q HVφ  is the angle between the equator and the great 
circle with basis diameter HV through the point P, and it is equal to the angle between the XOY plane and 
the XOP plane. Drawing a projecting line from point P to the YOZ plane, the intersecting point P′  is on the 
XOP plane, so YOHV Pφ ′= ∠  ( HVφ φ=  in Fig. 2.5). On the YOZ plane we find that 
 

3

2

tan 2tan tan YO P
sin 2HV

q
q

χφ
ψ

′= ∠ = =   (2.55) 

which satisfies equations (2.46) and (2.37). 
 
2.6.2 The polarization ratio on the Poincaré sphere for different polarization bases 
Also, it can be shown that a polarization state can be represented in different polarization bases. Any 
polarization basis consists of two unit vectors which are located at two corresponding antipodal points on the 
Poincaré sphere. Fig 2.6 shows how the polarization state P on the Poincaré sphere can be represented in 
three polarization bases, {H V}, {45° 135°}, and  
{L R}. The complex polarization ratios are given by 
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 ( )
( )

( )

   0tan exp 2exp
tan exp    

2
  

HV
HV HV

HV HV HV
HV HV

HV

j
j

j

παα φ
ρ ρ φ

πα φ α π

< <= = 
− < <

 (2.56) 

 

( )
( )

( )
45 13545 135 45 135

45 135 45 135 45 135

45 135 45 135
45 135

   0tan exp 2exp
tan exp    

2
  

j
j

j

παα φ
ρ ρ φ

πα φ α π

< <= = 
− < <

o o
o o o o

o o o o o o

o o o o
o o

 (2.57) 

 

( )
( )

( )

   0tan exp 2exp
tan exp    

2
  

LR
LR LR

LR LR LR
LR LR

LR

j
j

j

παα φ
ρ ρ φ

πα φ α π

< <= = 
− < <

 (2.58) 

 
where tan HVα , 

45 135
tanα o o , and tan LRα  are the ratios of the magnitudes of the corresponding orthogonal 

components, and HVφ , 
45 135

φ o o , and LRφ  are the phase differences between the corresponding orthogonal 
components 

 
Fig 2.6 The Polarization State P in Different Polarization Bases 
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2.6.3 The relationship between the Stokes vector and the polarization ratio for different polarization 
bases 

First, consider the polarization ratio HVρ  defined in the {H V} basis. Because cos 2 HVα  is the direction 
cosine of the Stokes vector q  with respect to the X-axis, we find 

22
1

22
0

11 tancos 2
1 tan 1

HVHV
HV

HV HV

q
q

ραα
α ρ

−−
= = =

+ +
  (2.59) 

 
the straight forward solution for HVρ  is  

0 1

0 1
HV

q q
q q

ρ −
=

+
  (2.60) 

 
from (2.54), we find 

1 3

2

YO P tanHV
q
q

φ −  
′= ∠ =  

 
  (2.61) 

 
Combining above two equations yields 

10 1 3

0 1 2

exp( ) exp tanHV HV HV
q q qj j
q q q

ρ ρ φ −  −  = =   +    
  (2.62) 

 
For a completely polarized wave, we may obtain the Stokes vector in terms of the polarization ratio HVρ  by 
applying  

2 2 2
0 1 2 3

2

1 2

2 2 2

3 2

1

1
cos 2

1

2 cos 2 tan cos sin(2 )cos
1 1 tan

2 sin
sin(2 )sin

1

HV
HV

HV

HV HV HV HV
HV H

HV HV

HV HV
HV HV

HV

q q q q

q

q

q

ρ
α

ρ

ρ φ α φ
Vα φ

ρ α

ρ φ
α φ

ρ

= + + =

−
= =

+

= = =
+ +

= =
+

  (2.63) 

 
The sign of the three components of the Stokes vector is summarized in Table 2.3. 
 
Secondly, consider the polarization ratio 

45 135
ρ o o  defined in the {45° 135°} basis. The 

45 135
cos 2α o o  is the 

direction cosine of the Stokes vector  with respect to the Y-axis. So similarly, with q
 

0

0 2
45 135

0 2

1 3
45 135

1

1

tan

q

q q
q q

q
q

ρ

φ −

=

−
=

+

 
= − 

 

o o

o o

  (2.64) 
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TABLE 2.3 
THE SIGN OF THE , , AND  PARAMETERS IN THE {H V} BASIS 1q 2q 3q

HVφ  HVα  1q  2q  3q  

0 2
2HV
πα< <  

+  +  +  

2
2 HV
π α π< <  

−  +  +  

30 2
2HV
πα< <  

−  −  −  

 
 
 

0
2HV
πφ< <  

3 2 2
2 HV
π α π< <  

+  −  −  

0 2
2HV
πα< <  

+  +  −  

2
2 HV
π α π< <  

−  +  −  

30 2
2HV
πα< <  

−  −  +  

 
 
 

0
2 HV
π φ− < <  

3 2 2
2 HV
π α π< <  

+  −  +  

 
Then the polarization ratio 

45 135
ρ o o  can be determined by the Stokes vector q  

10 2 3
45 135

0 2 1

exp tanq q qj
q q q

ρ −  −  = −  +    
o o   (2.65) 

 
Also, the Stokes vector  can be determined by the polarization ratio q

45 135
ρ o o  as follows: 

 
0

45 135 45 135
1 2 45 135 45 135

45 135

2

45 135
2 2 45 135

45 135

45 135 45 135
3 2 45 135 45 135

45 135

1

2 cos
sin 2 cos

1

1
cos 2

1

2 sin
sin 2 sin

1

q

q

q

q

ρ φ
α φ

ρ

ρ
α

ρ

ρ φ
α φ

ρ

=

= = −
+

−
= =

+

= =
+

o o o o

o o o o

o o

o o

o o

o o

o o o o

o o o o

o o

  (2.66) 

Finally, consider the polarization ratio LRρ  defined in the {L R} basis. Similarly, because the cos 2 LRα  is 
the direction cosine of the Stokes vector  with respect to the Z-axis, the polarization ratio q LRρ  can be 
determined by the Stokes vector q  as: 

 

10 3 2

0 3 1

exp tanLR
q q qj
q q q

ρ −  −  =   +    
  (2.67) 
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Inversely, 
0

1 2

2 2

2

3 2

1
2 cos

sin 2 cos
1

2 sin
sin 2 sin

1

1
cos 2

1

LR LR
LR LR

LR

LR LR
LR LR

LR

LR
LR

LR

q

q

q

q

ρ φ
α φ

ρ

ρ φ
α φ

ρ

ρ
α

ρ

=

= =
+

= =
+

−
= =

+

  (2.68) 

 
TABLE 2.4 

ALTERNATE EXPRESSIONS FOR NORMALIZED STOKES VECTOR PRESENTATIONS ON THE 
POLARIZATION SPHERE 

 
 ,χ ψ  ,HV HVα φ  

45 135 45 135
,α φo o o o  ,LR LRα φ  

0q  1 1 1 1 

1q  cos 2 cos 2χ ψ  cos 2 HVα  
45 135 45 135

sin 2 cosα φ− o o o o  sin 2 cosLR LRα φ  

2q  cos 2 sin 2χ ψ  sin 2 cosHV HVα φ  
45 135

cos 2α o o  sin 2 sinLR LRα φ  

3q  sin 2χ  sin 2 sinHV HVα φ  
45 135 45 135

sin 2 sinα φo o o o  cos 2 LRα  
 

 
2.6.4 The Poincaré polarization sphere and complex polarization ratio plane 
Using the Riemann transformation, Poincaré introduced the polarization sphere representation of Fig. 2.5 
which gives a relationship between the polarization ratio ρ  and its corresponding spherical coordinates on 
the Poincaré sphere. First we need to introduce an auxiliary complex parameter u( )ρ , which is defined by 
the Riemann transformation [14] of the surface of the sphere onto the polar grid as follows, 

1u( )
1

j
j
ρρ
ρ

−
=

+
  (2.69) 

 
in the {H V} basis , tan exp{ } tan (cos sin )HV HV HV HV HVj j HVρ α φ α φ φ= = + , then 

(1 tan sin ) tan cosu
(1 tan sin ) tan cos

HV HV HV HV

HV HV HV H

j
j V

α φ α φ
α φ α

+ −
=

− + φ
 

2
2

2

1 2 tan sin ) tanu
1 2 tan sin ) tan

HV HV HV

HV HV HV

α φ α
α φ α

+ +
=

− +
 

2

2 2

u 1 2 tan sin sin 2 sin
1 tanu 1

HV
HV HV

HV

α
HVφ α φ

α
−

= =
++

 

according to (2.36) and Fig. 2.4b, the polar angle 2 2π χΘ = − can be obtained from  
2

2

u 1
sin 2 sin( 2 ) cos

u 1
χ π

−
= = − Θ =

+
Θ  

so that 
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2
1

2

u 1
cos

u 1
−

 −
Θ =  

 + 


 (2.70) 

also, according to (2.36) and Fig. 2.4b, the spherical azimuthal angle 2ψΦ =  can be obtained from 

2

2 tan cosIm{u} tan 2 tan
Re{u} 1 tan

HV HV

HV

α φ ψ
α

− = = =
−

Φ , so that the spherical azimuthal angle Φ  becomes 

1 Im{u}tan
Re{u}

−  
Φ = 

 
  (2.71) 

 
 

Fig. 2.7 Poincaré Sphere and the Complex Plane 
 

2.7 Wave Decomposition Theorems 
The diagonalization of , under the unitary similarity transformation is equivalent to finding an 

orthonormal polarization basis in which the coherency matrix is diagonal or  
ijJ  
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

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








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


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
=








∗∗

∗∗

2221

1211

2

1

2212

2111

0
0

ee
ee

ee
ee

JJ
JJ

nnnm

mnmm

λ
λ

 (2.72) 

where 1λ and 2λ  are the real non-negative eigenvalues of [  with ]J 1 2 0λ λ≥ ≥ , and [ ]1 11 12ˆ   Te e=e    and  

[ ]2 21   22ê    Te e=

{
 are the complex orthogonal eigenvectors which define [  and a polarization basis 2 ]U

}1ˆ ˆ,  e e2  in which [  is diagonal. [  is Hermitian and hence normal and every normal matrix can be 
unitarily diagonalized . Being positive semidefinite the eigenvalues are nonnegative. 

]J ]J

 
2.8 The Wave Dichotomy of Partially Polarized Waves 
The solution of (2.72) provides two equivalent interpretations of partially polarized waves [28]: i) separation 
into fully polarized[ , and into completely depolarized [  components 1J ] ]2J
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[ ] [ ] [ ]22121 )( IJJ λλλ +−=  (2.72) 
where [ 2 ]I  is the 2x2 identity matrix ; ii) non-coherency of two orthogonal completely polarized wave states 
represented by the eigenvectors and weighed by their corresponding eigenvalues as 
[ ] [ ] [ ] )ˆˆ()ˆˆ()( 22112211

†
2

†
1 eeee ⋅+⋅=+= λλλλ JJJ  (2.74) 

where  ; and if 1 2{[ ]} {[ ]} 0Det J Det J= = 21λ λ=   the wave is totally depolarized (degenerate case) 
whereas for 2 0λ =

pD

, the wave is completely polarized. Both models are unique in the sense that no other 
decomposition in form of a separation of two completely polarized waves or of a completely polarized with 
noise is possible for a given coherency matrix, which may be reformulated in terms of the ‘degree of 
polarization’  as 

)0(1)(0, 221
21

21 ==
+
−

= λλλ
λλ
λλ              andDp  (2.75) 

for a partially unpolarized and completely polarized wave. The fact that the eigenvalues 1λ  and 2λ  are 
invariant under polarization basis transformation makes pD  an important basis-independent parameter. 
 
2.9 Polarimetric Wave Entropy 
Alternately to the degrees of wave coherency µ  and polarization , the polarimetric wave entropy pD Hω  

[28] provides another measure of the correlated wave structure of the coherency matrix[ , where by using 
the logarithmic sum of eigenvalues 

]J

2

2
1 1 2

{ log }       i
i i i

i
H P P with Pω

λ
λ λ=

= − =
+∑  (2.76) 

so that     and the normalized wave entropy ranges from  01 2 1P P+ = 1Hω≤ ≤  where for a completely 
polarized wave with 2 0λ =  and , while a completely randomly polarized wave with 0Hω = 1 2λ λ=   
possesses maximum entropy . 1Hω =
 
2.10 Alternate Formulations of the Polarization Properties of Electromagnetic Vector Waves                 
There exist several alternate formulations of the polarization properties of electromagnetic vector waves 
including; (i) the ‘Four-vector Hamiltonian’ formulation frequently utilized by Zhivotovsky [109] and by 
Czyz [110], which may be useful in a more concise description of partially polarized waves ; (ii) the 
‘Spinorial formulation’ used by  Bebbington [32], and in general gravitation theory [111] ; and (iii) a pseudo-
spinorial formulation by Czyz [110] is in development which are most essential tools for describing the 
general bi-static (non-symmetric) scattering matrix cases for both the coherent (3-D Poincaré sphere and the 
3-D polarization spheroid) and the partially polarized (4-D Zhivotovsky sphere and 4-D spheroid) cases 
[109]. Because of the exorbitant excessive additional mathematical tools required, and not commonly 
accessible to engineers and applied scientists, these formulations are not presented here but deserve our 
fullest attention in future analyses. 
 
3. The Electromagnetic Vector Scattering Operator and the 

Polarimetric Scattering Matrices 
The electromagnetic vector wave interrogation with material media is described by the Scattering 
Operator  with  representing the wave vectors of the scattered and incident, 

 respectively, where  
[ ])/( isS kk  
)i r

is kk ,
( ), (sE r E

)exp()exp()( 00 rkerkrE ⋅−=⋅−= s
s

ss
ss jEjE                                                                          (3.1) 

is related to  
)exp()exp()( 00 rkerkrE ⋅−=⋅−= i

i
ii

ii jEjE                                                                            (3.2) 
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[ ]exp( )( ) ( / ) ( )s s
s i

j S
r

− ⋅
=

k rE r k k E ri

]
                                                                                     (3.3)                                       

The scattering operator  is obtained from rigorous application of vector scattering and diffraction 
theory, to the specific scattering scenario under investigation which is not further discussed here, but we refer 
to [97] for a thought-provoking formulation of these still open problems.                          

[ )/( isS kk

 
3.1 The Scattering Scenario and the Scattering Coordinate Framework 
The scattering operator  appears as the output of the scattering process for an arbitrary input , 
which must carefully be defined in terms of the scattering scenario; and, its proper unique formulation is of 
intrinsic importance to both optical and radar polarimetry. Whereas in optical remote sensing mainly the 
‘forward scattering through translucent media’ is considered, in radar remote sensing the ‘back scattering 
from distant, opaque open and closed surfaces’ is of interest, where in radar target backscattering we usually  
deal with closed surfaces whereas in SAR imaging one deals with open surfaces. These two distinct cases of 
optical versus radar scattering are treated separately using two different reference frames; the ‘Forward   
(anti-monostatic) Scattering Alignment (FSA)’ versus the ‘Back Bistatic Scattering Alignment (BSA)’ from 
which the ‘Monostatic Arrangement’ is derived as shown in Fig. 3.1. In the following, separately detailed for 
both the FSA and BSA systems are shown in Figs. 3.2 and 3.3. 

[ )/( isS kk ] i
0E

 

 
Fig. 3.1 Comparison of the FSA, BSA, and MSA Coordinate Systems 
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ŷ

iθ
sθ

iφ

sφ
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Fig. 3.2 Detailed Forward Scattering Alignment (FSA) 
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Fig. 3.3 Detailed Back Scattering Alignment (BSA) 
 

3.2 The 2x2 Jones Forward [J]  versus 2x2 Sinclair [S] Back-Scattering Matrices 
Since we are dealing here with radar polarimetry, interferometry and polarimetric interferometry, the 
‘bistatic BSA reference frame’ is more relevant and is here introduced only for reasons of  brevity but dealing 
both with the bistatic and the monostatic cases ; where we refer to [52, 53], [76] and [19] for a full treatment 
of the ‘anti-monostatic FSA reference frame’. Here, we refer to the dissertation of Papathanassiou [97], the 
textbook of Mott [76], and meticulous derivations of Lüneburg [52] for more detailed treatments of the 
subject matter, but we follow here the derivation presented in [19]. Using the coordinates of Fig. 3.1 with 
right-handed coordinate systems; 1x 1y 1z , 2x 2y 2z , 3x 3y 3z ; denoting the transmitter, scatterer and 
receiver coordinates, respectively, a wave incident on the scatterer from the transmitter is given by the 
transverse components and  in the right-handed coordinate system 

1x
E

1yE 1x 1y 1z  with the  axis pointed at 

the target. The scatterer coordinate system 
1z

2x 2y 2z  is right-handed with  pointing away from the scatterer 2z
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toward a receiver. BSA Coordinate System 3x 3y 3z  is right-handed with  pointing toward the scatterer. It 
would coincide with the transmitter system 

3z

1x 1y z1  if the transmitter and receiver were co-located. The wave 
reflected by the target to the receiver may be described in either the transverse components and   or by 

the reversed components
2xE

2yE

3xE and 
3yE . Both conventions are used, leading to different matrix formulations. The 

incident and transmitted or reflected (scattered) fields are given by two-component vectors; therefore the 
relationship between them must be a 2x2 matrix. If the scattered field is expressed in 3x 3y 3z   coordinates 

(BSA), the fields are related by the Sinclair matrix [ ]S , thus 
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  (3.4) 

 
and if the scattered field is in 2x 2z  coordinates (FSA), it is given by the product of the Jones matrix [ ]J  
with the incident field, thus 
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 (3.5) 

 

In both equations the incident fields are those at the target, the received fields are measured at the receiver, and 
 is the distance from target to receiver. The ‘Sinclair matrix2r [ ]S ’ is mostly used for back-scattering, but is 

readily extended to the bistatic scattering case. If the name scattering matrix is used without qualification, it 
normally refers to the Sinclair matrix [ ]S . In the general bistatic scattering case, the elements of the Sinclair 
matrix are not related to each other, except through the physics of the scatterer. However, if the receiver and 
transmitter are co-located, as in the mono-static or back-scattering situation, and if the medium between target 
and transmitter is reciprocal, mainly the Sinclair matrix [ ](S AB)  is symmetric, i.e. S . The Jones 
matrix is used for the forward transmission case; and if the medium between target and transmitter, without 
Faraday rotation, the Jones matrix is usually normal. However, it should be noted that the Jones matrix is not in 
general normal, i.e., in general the Jones matrix does not have orthogonal eigenvectors. Even the case of only 
one eigenvector (and a generalized eigenvector) has been considered in optics (homogeneous and 
inhomogeneous Jones matrices).  If the coordinate systems being used are kept in mind, the numerical 
subscripts can be dropped. 
 
It is clear that in the bistatic case, the matrix elements for a target depend on the orientation of the target with 
respect to the line of sight from transmitter to target and on its orientation with respect to the target-receiver line 
of sight. In the forms (3.4) and (3.5) the matrices are absolute matrices, and with their use the phase of the 
scattered wave can be related to the phase of the transmitted wave, which is strictly required in the case of 
polarimetric interferometry. If this phase relationship is of no interest, as in the case of mono-static polarimetry, 
the distinct phase term can be neglected, and one of the matrix elements can be taken as real. The resulting form 
of the Sinclair matrix is called the relative scattering matrix. In general the elements of the scattering matrix 
are dependent on the frequency of the illuminating wave [19, 14, 15]. 
  
Another target matrix parameter that should be familiar to all who are interested in microwave remote sensing is 
the radar cross section (RCS). It is proportional to the power received by a radar and is the area of an 
equivalent target that intercepts a power equal to its area multiplied by the power density of an incident wave and 
re-radiates it equally in all directions to yield a receiver power equal to that produced by the real target. The radar 
cross section depends on the polarization of both transmitting and receiving antennas. Thus the radar cross 
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section may be specified as HH (horizontal receiving and transmitting antennas), HV (horizontal receiving and 
vertical transmitting antennas), etc. When considering ground reflections, the cross section is normalized by the 
size of the ground patch illuminated by the wave from the radar. The cross section is not sufficient to describe 
the polarimetric behavior of a target. In terms of the Sinclair matrix [ ]S , and the normalized effective lengths of 

transmitting and receiving antennas, h and , respectively, the radar cross section is  ˆ  t
ˆ

rh

 [ ]
2  Tˆ ˆ =      h hrt r Sσ t  (3.6) 

 
A polarimetrically correct form of the radar equation that specifies received power in terms of antenna and 
target parameters is 
 

 [ ]
2  T

  r  tˆ ˆS   h h
ert t

rt 2
1 2

 ( , ) ( , )W G A  =    W
(4   )r r

θ φ θ φ
π

 (3.7) 

 
where W  is the transmitter power and subscripts t and r identify transmitter and receiver, and its properties are 

defined in more detail in Mott [76] and in [19]. The effective antenna height
t

( )φθ ,ˆ  h , is defined via the electric 
field E , radiated by an antenna in its far field, as ( φθ , ),rt

( ) ( ) ( φθ
λ

φθ , −
 

=, hEt ˆexp
2

, 0 jkr
r
IjZr ) ,                                                                                            (3.8) 

 
with  the characteristic impedance, 0Z λ the wavelength, and I the antenna current. 
 
3.3 Basis Transformations of the 2x2 Sinclair Scattering Matrix [S] 
Redefining the incident and scattering cases in terms of the standard {H V} notation with ,  H x V y= =  
and with proper re-normalization, we redefine (3.1) as  
 

[ ]s
HV HVS ∗=E EHV       or   [ ]s ( ) ( ) (HV S HV HV=E * )E                                                         (3.9) 

 
where the complex conjugation results from inversion of the coordinate system in the BSA arrangement 
which invites a more rigorous formulation in terms of directional Sinclair vectors including the concepts of 
time reversal as treated by Lüneburg [52]. Using these Sinclair vector definitions one can show that the 
transformation from one orthogonal polarisation basis  
{H V} into another {i j} or {A B} is a unitary congruence (unitary consimilarity) transformation of the 
original Sinclair scattering matrix [  into [ , where  HVS] ijS]
 

2 2[ ] [ ][ ] [ ] T
ij HVS U S U=  or  [ ] [ ] [ ] [ ]2( )  ( )  TS ij U S HV U= = 2

]

                                                 (3.10) 
 
with  [  given by (2.23), so that the components of the general non-symmetric scattering matrix for the 
bistatic case in the new polarization basis, characterized by a complex polarization ratio 

2U
ρ , can be written as 

[81, 25] 
 

[ VVVHHVHHii SSSSS 2

1
1 ∗∗∗

∗ +−−
+

= ρρρ
ρρ

]                                                                          (3.11) 

[ ]VVVHHVHHij SSSSS ∗∗
∗ −−+

+
= ρρρρ

ρρ1
1

  

Basics of SAR Polarimetry I 

RTO-EN-SET-081 1 - 27 



 

 

[ ]VVVHHVHHji SSSSS ∗∗
∗ −+−

+
= ρρρρ

ρρ1
1

 

[ ]VVVHHVHHjj SSSSS +−+
+

= ∗ ρρρ
ρρ

2

1
1

  

There exist three invariants for the general bistatic case (BSA) under the change-of-basis transformation as 
given by (3.5): 
 
 (i) { } { }22222222

4 ||||||||||||||||][ jjjiijiiVVVHHVHH SSSSSSSSSSpan +++=+++==κ      (3.12) 
 
confirms that the total power is conserved, and it is known as Kennaugh’s span-invariant ; 4κ
 
(ii)  , for  monostatic case                                                                        (3.13) jiijVHHV SSSS −=−
warranting symmetry of the scattering matrix in any polarization basis as long as the BSA for the strictly 
mono-static but not general bistatic case is implied;  
 
(iii)      or   }]{[}]{[ ijHV SDetSDet = {[ ( )]} {[ ( )]}Det S HV Det S ij=     (3.14) 
 
due to the fact that   implies determinantal invariance. 1]}{[ 2 =UDet
 
In addition, diagonalization of the scattering matrix, also for the general bistatic case, can always be obtained 
but requires mixed basis representations by using the ‘Singular Value Decomposition Theorem (SVD)’ [52, 
53] so that the diagonalized scattering matrix [ ]DS   can be obtained by the left and right singular vectors, 
where  
 

]][][[][ RLD QSQS =  with  [                                                                            (3.15) 
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and 1]}{[]}{[ == RL QDetQDet  
 
and   and   denote the diagonal eigenvalues of [ , and the diagonal elements 

1λS
2λS ]S

1
Sλ and 

2
Sλ can be 

taken as real nonnegative and are known as the singular values of the matrix [ . For the symmetric 
scattering matrices in the mono-static case (MSA), diagonalization is achieved according to the unitary 
consimilarity transform for which 

]S

 
[ ] [ ]T

R LQ Q=                                                                                                      (3.16)      
 
and above equations will simplify due to the restriction of symmetry ij jiS S= . 
 
3.4 The 4x4 Mueller (Forward Scattering) [M] and the 4x4 Kennaugh (Back-Scattering) [K] 

Power Density  Matrices 
For the partially polarized cases, there exists an alternate formulation of expressing the scattered wave in 
terms of the incident wave via the 4x4 Mueller[ ]M   and Kennaugh [  matrices for the FSA and BSA 
coordinate formulations, respectively, where          

]K

 
]][[][ is qMq =                                                                                                                           (3.17) 
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For the purely coherent case, [ ]M  can formally be related to the coherent Jones Scattering Matrix [  as  ]T
 

[ ] 111 ])[][]]([[])[][]([][1111][ −∗−∗− ⊗=⊗−= ATTAATTAM T                                         (3.18) 
 
with  symbolizing the standard Kronecker tensorial matrix product relations [112] provided in (A.1), 
Appendix A, and the 4x4  expansion matrix [  is given by [76] as 
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with the elements  of [ijM ]M ,  given in (B.1), Appendix B. 
 

Specifically we find that if [  is normal, i.e. [ ] , then []T * *[ ] [ ] [ ]T TT T T T=  ]M  is also normal, i.e.  
. ][][]][[ MMMM TT =

 
Similarly, for the purely coherent case [76], [  can formally be related to the coherent Sinclair 

matrix [  as  
]K

]S
 

11 ])[][]([][2][ −∗− ⊗= ASSAK T                                                                                                 (3.20) 
 
where 
 

∗− = ][
2
1][ 1 AA T                                                                                                                          (3.21) 

 
and for a symmetric Sinclair matrix [  , then [   is symmetric, keeping in mind the ‘mathematical 
formalism’  [ , but great care must be taken in strictly distinguishing the 
physical meaning of [   versus [

]S
[1 K 
]

]K
[ ]111] diagM −=
]K

]
M  in  terms of [   versus [  respectively. Thus, if [   is 

symmetric,  ,  then [   is symmetric, 
]S

jiK
]T ]S

VHHV SS = ]K ijK =   ; and the correct elements for [ ]M , [  and 
the symmetric cases are presented in (B.1 – B.5), Appendix B. 

]K

 
3.5 The 2x2 Graves Polarization Power Scattering Matrix [G]  
Kennaugh introduces, next to the Kennaugh matrix[ , another formulation]K [ ]G , for expressing the power 

in the scattered wave  to the incident wave  for the coherent case in terms of the so-called ‘Graves 
polarization coherent power scattering matrix [ ’, where  

SE iE
]G

 

2
0 2

1 E [ ]E
8  Z

S iTP
rπ

∗

= iG                                                                                                            (3.22) 

 
so that in terms of the Kennaugh elements , defined in the appendix,  for the mono-static case ijK
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By using a single coordinate system for ( ,1 1 1, )x y z  and ( ,3 3 3, )x y z  for the monostatic case, as in Fig. 3.1, 
and also described in detail in [19], it can be shown that for a scatterer ensemble (e.g. precipitation) for 
which individual scatterers move slowly compared to a period of the illuminating wave, and quickly 
compared to the time-averaging of the receiver, time-averaging can be adjusted to find the decomposed 
power scattering matrix [ ]G , as  
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This shows that the time averaged ‘Graves Power Scattering Matrix [ ]G ’, first introduced by Kennaugh [4, 
5], can be used to divide the powers that are received by linear horizontally and vertically by polarized 
antennas, as discussed in more detail in [19] and in [113]. It should be noted that a similar decomposition 
also exists for the Muller/Jones matrices, commonly denoted as FSA power scattering matrix 
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 which is not further analyzed here [113]. 
 
3.6 Co/Cross-Polar Backscattering Power Decomposition for the One-Antenna (Transceiver) and 

the Matched Two-Antenna (Quasi-Monostatic) Cases 
Assuming that the scatterer is placed in free unbounded space and that no polarization state transformation 
occurs along the propagation path from the transmitter (T) to the scatterer incidence (S), and along that from 
the scatterer(s) to the receiver (R), then the value of the terminal voltage of the receiver, V , induced by an 
arbitrarily scattered wave  E  at the receiver, is defined by the radar brightness function V ,  and the 
corresponding received power       expression  

R

R

P
R

 R

 

RRR
T

R VVPV    E h             RR
*

2
1ˆ ==                                                                                              (3.26) 

 
with the definition of the Kennaugh matrix [  in terms of the Sinclair matrix [ , the received power or 
radar brightness function may be re-expressed  

]K ]S

 
 

21 1ˆ    [S]     [ ] 
2 2

T
RT R T R TP = =h E q K q                                                                                (3.27) 

 
where q  and  the corresponding normalized Stokes’ vectors. R Tq
For the one-antenna (transceiver) case the co-polar channel (c) and the cross-polar channel (x) powers 
become: 
  

Tc
T

TT
T

Tc KP q  q   E S h   ][
2
1][ˆ

2
1 2

==                                                                                         (3.28) 
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T T
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⊥
= =h q TK q                                                                              (3.29) 

 
with 
 

( ) [ ][ ]KCATTAK T
c    =⊗= −∗− 11 ])[][]([][][                                                                                  (3.30) 

 

( ) [ ] [ ][ ]KCATTYAK x
T

x     =⊗= −∗− 11 ])[][][(][][                                                                            (3.31) 
 
and 
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For the Two-Antenna Dual Polarization case, in which one antenna serves as a transmitter and the other as 
the receiver, the optimal received power  for the ‘matched case’ becomes by using the matching condition mP
 

ss R E  /E h
m

*ˆ =                                                                                                                         (3.33) 
 
so that  

Tm
T

Tm KP q  q   ][= ,  where [ ] [ ] [ ][ ]KKKKK xcm         11][ =+= , and  [          (3.34) 
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which represent an essential relationship for determining the optimal polarization states from the  
optimization of the Kennaugh matrix. 
 
3.7 The Scattering Feature Vectors : The Lexicographic and the Pauli  Feature Vectors 
Up to now we have introduced three descriptions of the scattering processes in terms of the 2x2 Jones versus 
Sinclair,  versus [ ,  the 2x2 power scattering matrices, [ versus , and the 4x4 power density 
Muller versus Kennaugh matrices, [

[ ]T ]S ]F [ ]G
]M  versus [ . Alternatively, the polarimetric scattering problem can 

be addressed in terms of a vectorial feature descriptive formulation [114] borrowed from vector signal 
estimation theory. This approach replaces the 2x2 scattering matrices [  versus[ ,   the 2x2 power 
scattering matrices [ versus , and the 4x4 Muller [

]K

]T ]S
]F [G] ]M  versus Kennaugh [  matrices by an 

equivalent four-dimensional complex scattering feature vector , formally defined for the general bi-static 
case as  

]K

4f

 

[4 0
1[ ]   {[ ]} {[ ] }
2

THH HV
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VH VV

S S
S F S Trace S f

S S
ψ

 
= ⇒ = = = 

 
f ]1 2 3f f f                        (3.35) 

 
where  is the matrix vectorization operator Trac  is the sum of the diagonal elements of [ , 
and 

{[ ]}F S {[ ]}e S ]S
ψ  is a complete set of 2x2 complex basis matrices under a hermitian  inner product. For the 

vectorization of any complete orthonormal basis set [97] of four 2x2 matrices that leave the (Euclidean) 
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norm of the scattering feature vector invariant, can be used, and there are two such bases favored in the 
polarimetric radar literature; one being the ‘lexicographic basis’ [ ]LΨ , and the other  ‘Pauli spin matrix set’ 

[ ]PΨ . We note here that the distinction between the lexicographic and Pauli-based feature vector 
representation is related to Principal and Independent Component Analysis (PCA/ICA) which is an 
interesting topic for future research. 

[ ]≡Ψ  L

L S  f =4

[ ]PΨ

[ ]




 ≡Ψ  P

HV S  +P4   f =

[  P4 =
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2

2 +HV4 =  f

4Pf = 4Pf

(i) The ‘Lexicographic Feature vector’: , is obtained from the simple lexicographic expansion of  [ ]  
using  [

L4f S
]LΨ ,  with 
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so that the corresponding feature vector becomes 
 

[ T
VVVHHVHH SSS ]                                                                                                          (3.37) 

 
(ii) The Pauli Feature vector   is obtained from the renowned complex Pauli spin matrix basis set P4f

which in a properly re-normalized presentation is here defined as  
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resulting in the ‘polarimetric correlation phase’ preserving ‘Pauli Feature Vector’. 
 

[ ] [ ]TVHHVVHHHVVVVHH
T
P SSjSSSSSffff )(

2
1

3210  -        −+=            (3.39) 

 
where the corresponding scattering matrix  [ ]PS  is related to the ]   T

Pffff 3210f                  by 

[ ]0 1 2 3

2 1 0 1

  1  
  2

f f f jf
S

f jf f f
− − 

=  + + 
                                                                                 (3.40) S=

 
3.8 The Unitary Transformations of the Feature Vectors 
The insertion of the factor 2 in (3.36) versus the factor  in (3.38) arises from the ‘total power 
invariance’, i.e. keeping the norm independent from the choice of the basis matrices , so that  Ψ

 

[ ]{ } [ ][ ]{ } ( ) 4
222

2
1

2
1Span

2
1

κ=++===⋅ VVVHHH SSSSSSTraceS †
4

†
4      f f            (3.41) 

 
This constraint forces the transformation from the lexicographic to the Pauli-based feature vector [52, 53, 
114], or to any other desirable one, to be unitary, where with   
 

[ ] 4Lf4D    and reversely                   [ ]4L
1

4
-D=f                            (3.42) 

 
we find  
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Furthermore, these special unitary matrices relating the feature vectors control the more general cases of 
transformations related to the change of polarization basis. By employing the Kronecker direct  tensorial 
product of matrices, symbolized by ⊗ , we obtain, the transformation for the scattering vector  from the 
linear   { }ˆ ˆ,H Vu u  to any other elliptical polarization basis { }ˆ ˆ,A Bu u , characterized by the complex 
polarization ratio by 
 

4 4 4( ) [ ] (L L LAB U HV=f f )    and   f )(][)( 444 HVUAB PPP f=                                                      (3.44) 
 
where [  is the transformation matrix for the conventional feature vector f  4LU ]

2

4L

Here we note that in order to obtain the expression[ , the unitary congruence (unitary 
consimilarity) transformation for the Sinclair scattering matrix in the reciprocal case was used. This implies 
however that we must distinguish between forward scattering and backscattering (and so also bistatic 
scattering); where for the reciprocal backscatter case the 3-dimensional target feature vectors ought to be 
used. These features lead to interesting questions which however need more in depth analyses for which the 
ubiquity of the Time Reversal operation shows up again. 

4 2] [ ] [ ]T
LU U U= ⊗





















−−
−−

−−

+
=⊗=

∗∗

∗∗

∗∗∗

∗

1
1

1
1

1
1][][][

2

224

2

ρρρ
ρρρρ
ρρρρ

ρρρ

ρρ
T

L UUU                                                   (3.45) 

and [ 4 ]PU  is the homologous transformation matrix for the Pauli-based feature vector 4Pf  
 

†]][][[][ 4444 DUDU LP =                                                                                                             (3.46) 
 
where  and [4[ LU ] ]4PU  are special 4x4 unitary matrices for which with [ 4 ]I  denoting the 4x4 identity 
matrix 
 

][]][[ 444 IUU =     and                                                                                        (3.47) 1]}{[ 4 =UDet
 
Kennaugh matrices and covariance matrices are based on completely different concepts (notwithstanding 
their formal relationships) and must be clearly separated which is another topic for future research. 
The main advantage of using the scattering feature vector,  or 4Lf 4Pf , instead of the Sinclair scattering 
matrix  and the Kennaugh matrix [ , is that it enables the introduction of the covariance matrix 
decomposition for partial scatterers of a dynamic scattering environment. However, there does not exist a 
physical but only a strict relationship mathematical between the two alternate concepts for treating the 
partially coherent case, which is established and needs always to be kept in focus [114].  It should be noted 
that besides the covariance matrices the so-called (normalized) correlation matrices are often used 
advantageously especially when the eigenvalues of a covariance matrix have large variations. 

[ ]S ]K

 
3.9 The Polarimetric Covariance  Matrix 
In most radar applications, the scatterers are situated in a dynamically changing environment and are subject 
to spatial (different view angles as in ‘SAR’) and temporal variations (different hydro-meteoric states in 
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‘RAD-MET’), if when illuminated by a monochromatic waves cause the back-scattered wave to be partially 
polarized with incoherent scattering contributions so that  “ [ ] [ ]( , )S S t= r ”. Such scatterers, analogous 

to the partially polarized waves are called partial scatterers [78, 90]. Whereas the Stokes vector, the wave 
coherency matrix, and the Kennaugh/Mueller matrix representations provide a first approach of dealing with 
partial scattering descriptions, the unitary matrix derived from the scattering feature  vector provides 
another approach borrowed from decision and estimation signal theory [115] which are currently introduced 
in Polarimetric SAR and Polarimetric-Interferometric SAR analyses, and these need to be introduced here. 
However, even if the environment is dynamically changing one has to make assumption concerning 
stationarity (at least over timescales of interest), homogeneity and ergodicity. This can be analyzed more 
precise by introducing the concept of space and time varying stochastic processes. 

4f

 
The 4x4 lexicographic polarimetric covariance matrix [  and the Pauli-based covariance matrix 4LC ]

]4[ PC  are defined, using the outer product ⊗ of the feature vector with its conjugate transpose as 
 

〉⋅〈= †ff LLLC 444 ][   and   [                                                                                 (3.48) 〉⋅〈= †ff PPPC 444 ]
 
where ...  indicates temporal or spatial ensemble averaging, assuming homogeneity of the random medium.  

The lexicographic covariance matrix [ contains the complete information in amplitude and phase variance 
and correlation for all complex elements of [  with 
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and 
 

†††††† ffffff ]][][[][][][][][ 44444444444444 DCDDDDDC LLLLLPPP =〉⋅〈=〉⋅〈=〉⋅〈=                       (3.50) 
 
Both the ‘Lexicographic Covariance [  ‘ and the ‘Pauli-based Covariance [4LC ] ]4PC ]’  matrices are 
hermitian positive semi-definite matrices which implies that these possess real non-negative eigenvalues and 
orthogonal eigenvectors. Incidentally, those can be mathematically related directly to the Kennaugh matrix 

, which is not shown here; however, there does not exist a physical relationship between the two 
presentations which must always be kept in focus. 
[K ]

 
The transition of the covariance matrix from the particular linear polarization reference basis  
{H V} into another elliptical basis {A B}, using the change-of-basis transformations defined in (3.41 – 3.45), 
where for 
 

†††† ffff ])][(][[][)()(][)()()]([ 4444444444 DHVCDUHVHVUABABABC LLLLLL =〉⋅〈=〉⋅〈=       (3.51) 
 
and for 
 

†††† ffff ])][(][[][)()(][)()()]([ 4444444444 DHVCDUHVHVUABABABC PPPPPP =〉⋅〈=〉⋅〈=      (3.52) 
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The lexicographic and Pauli-based covariance matrices, [  and [4LC ] ]4PC , contain, in the most general case, 
as defined in (3.49) and (3.50), sixteen independent parameters, namely four real power densities and six 
complex phase correlation parameters. 
 
3.10 The Monostatic Reciprocal Back-Scattering Cases 
For a reciprocal target matrix, in the mono-static (backscattering) case, the reciprocity constrains the Jones 
matrix to be usually normal, and the Sinclair scattering matrix to be symmetrical, i.e. HV VS S= H

] ]
, which 

further reduces the expressions of [  and [ .  Furthermore, the four-dimensional scattering feature vector 
 reduces to a three- dimensional scattering feature vector  such that following [97] 

G K

4f 3f
 

3 4 [ ]  ,  2    ,  T
L L HH HV VV HV VHQ S S S S = = = f f S                                                           (3.53) 

 
where with [ 3]I  being the unit 3x3 matrix and always keeping in mind that the transformation between 
lexicographic and Pauli ordering is a direct transformation of the scattering matrix (and not only of the 
covariance matrices) 
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and the factor 2   needs to be retained in order to keep the vector norm consistent with the span invariance 

. κ
Similarly, the reduced Pauli feature vector 3Pf  becomes 
 

[ ]3 4
1 [ ]  , 2    ,  
2

T
P P HH VV HH VV HV HVQ S S S S S S= = + − =f f VHS

]

                                     (3.55) 

 
The three-dimensional scattering feature vector from the lexicographic to the Pauli-based matrix basis, and 
vice versa, are related as  
 

 f f LP D 333 ][=   and     f                                                                                       (3.56)  f PL D 3
1

33 ][ −=
 
with [  defining a special 3x3 unitary matrix 3D
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The change-of-basis transformation for the reduced scattering vectors in terms of the complex polarization 
ratio ρ of the new basis is given by 
 

 f f )()]([)( 333 HVUAB LLL ρ=   and   f  f )()]([)( 333 HVUAB PPP ρ=                                            (3.58) 
 
where 
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which are 3x3 special unitary matrices.  
 
Thus, a reciprocal scatterer is completely described either by the 3x3 ‘Polarimetric Covariance Matrix 

’     3[ LC ]
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or by the 3x3 ‘Polarimetric Pauli Coherency Matrix [ ]3PC ’ 
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where the relation between the 3x3 Pauli coherency matrix [ 3 ]PC  and the 3x3 covariance matrix  [   is 
given by 

3LC ]
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and 
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where [     and    ][)]()][( 333 IUU LL =+ρρ 1)]}({[ 3 =ρLUDet                                                   (3.66) 
 
and 
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3.11 Co/Cross-polar Power Density and Phase Correlation Representations 
The Covariance matrix elements are directly related to polarimetric radar measurables, comprised of the 
Co/Cross-Polar Power Densities ( ) ( ) ( )ρρρ ⊥

cxc PPP     ,, , and the Co/Cross-Polar Phase Correlations 

,  [81],  where ( ) ( ) ( )ρρρ ⊥
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Once the covariance matrix has been measured in one basis, e.g., [ ]),(3 VHC L  in {H V} basis, it can easily 
be determined analytically for any other basis by definition of (3.60).  Plotting the mean power returns and 
phase correlations as function of the complex polarization ratio ρ  or the geometrical polarization ellipse 
parameters ψ , χ , of (3), yields the familiar ‘polarimetric signature plots’.  In addition, the expressions for 
the degree of coherence ( )µ ρ  and polarization ( )pD ρ defined in (2.30) and (2.31), respectively are given 
according to [34] by 
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  (3.69) 
and for coherent (deterministic) scatterers 1pDµ = = , whereas for completely depolarized scatterers 

0pDµ = = . 
 
The covariance matrix possesses additional valuable properties for the reciprocal back-scattering case which 

can be demonstrated by transforming  into its orthogonal representation for  [ ),(3 VHC L ] 
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leading to the following inter-channel relations 
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and the symmetry relations                                                                                                     
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]Similar, but not identical relations, could be established for the Pauli-Coherency Matrix [ )(3 ρPC , which are 

not presented here.  There exists another polarimetric covariance matrix representation in terms of the so-
called polarimetric inter-correlation parameters 0σ , ρ , δ , β , γ ,  and ε , where according to [19, Chapter 
5] 
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with the polarimetric inter-correlation parameters 0σ , ρ , δ , β , γ ,  and ε  defined as 
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                                               (3.74) 

 
This completes the introduction of the pertinent polarimetric matrix presentations, commonly used in radar 
polarimetry and in polarimetric SAR interferometry, where in addition the polarimetric interference matrices 
need to be introduced as shown in [19], after introducing briefly basic concepts of radar interferometry in 
[70]. 
 
3.12 Alternate Matrix Representations 
In congruence with the alternate formulations of the of the polarization properties of electromagnetic waves, 
there also exist the associated alternate tensorial (matrix) formulations related to the ‘four-vector 
Hamiltonian’ and ‘spinorial’ representations as pursued by Zhivotovsky [109], and more recently by 
Bebbington [32]. These formulations representing most essential tools for dealing with the ‘general bi-static 
(non-symmetric) scattering cases’ for both the coherent (3-D Poincaré and 3-D Polarization spheroid) and 
partially coherent (4-D Zhivotovsky sphere and spheroid) interactions, are not further pursued here; but these 
‘more generalized treatments’ of radar polarimetry deserve our fullest attention.  
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